

INDEX IN SQL SERVER
Tables with no clustered index defined (more on that later) are stored in a heap structure which essentially means that the data is stored as an unordered data set in each page.
What is a SQL Server Heap?
A heap table is a special type of table that does not have a clustered index defined on it.
With a heap structure the table data is not stored in any particular order.
 Heap tables can be used when the data coming into the table is random and has no natural order but non-clustered indexes should always be created on heap tables. If there are no non-clustered indexes defined when the table is queried all the data would have to be scanned and sorted in almost all cases leading to very poor performance.
SQL Server uses the IAM pages to move through the heap. The data pages and the rows within them are not in any specific order and are not linked. The only logical connection between data pages is the information recorded in the IAM pages.
sys.system_internals_allocation_units system view is reserved for SQL Server internal use only
 The following example shows how without any indexes on a heap structure the entire table is scanned and the final dataset also needs to be sorted before being returned.
Note: For this example I copied all the data from SalesOrderDetail into new table called SalesOrderDetail_HEAP.

	SELECT * INTO SalesOrderDetail_HEAP
FROM Sales.SalesOrderDetail

SELECT *,Cast(ProductID as Varchar(100)) + '-' + Cast(SalesOrderDetailID as Varchar(100)) as SalesProductId
INTO ProductSalesDetail
FROM Sales.SalesOrderDetail

SELECT * FROM SalesOrderDetail_HEAP WHERE SalesOrderID BETWEEN 43755 AND 43759
ORDER BY SalesOrderID, SalesOrderDetailID;

[image: query plan for a heap table]
	SET STATISTICS IO ON
SET STATISTICS TIME ON
SELECT * FROM SalesOrderDetail_HEAP WHERE SalesOrderID =43755

	select * from ProductSalesDetail where SalesOrderDetailID = 23692

	EXAMPLE – BEFORE INDEX - 1498 Pages
EXEC SP_SPACEUSED 'SalesOrderDetail_HEAP'

SELECT OBJECT_NAME(s.object_id) AS [TableName], s.row_count AS [RowCount],
 s.used_page_count AS [UsedPages],s.reserved_page_count AS [ReservedPages]
FROM sys.dm_db_partition_stats s JOIN sys.tables t
ON s.object_id = t.object_id WHERE OBJECT_NAME(s.object_id) = 'SalesOrderDetail_HEAP';

SELECT OBJECT_NAME(pa.object_id) AS [TableName],
 pa.page_free_space_percent,
 pa.page_type_desc,
 pa.allocated_page_page_id,
 pa.extent_file_id
FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('SalesOrderDetail_HEAP'), NULL, NULL, 'DETAILED') AS pa;

	CREATE CLUSTERED INDEX ix_SalesOrderID on SalesOrderDetail_HEAP(SalesOrderDetailID)
EXAMPLE –AFTER INDEX - Used Pages [1518 Pages] (20 Pages for Index]
(Reserved Pages : 1573)

SET STATISTICS IO ON
SET STATISTICS TIME ON
SELECT * FROM SalesOrderDetail_HEAP : It will scan all pages

SQL Server Heap Benefits and Usage
The main use case for implementing a heap structure is when you require fast INSERT performance on your table. Think of a log or audit table where new data is constantly being written. With a heap structure, there is no need for the database engine to figure out where to insert the new data. It simply adds data to the last page or if full, allocates a new page and writes the data in that page.
SQL Server Heap Disadvantages
Querying a heap table can be very slow. Especially if there aren't any non-clustered indexes defined on the table. Without any indexes, every query that accesses the heap table must perform a full table scan and we all know how expensive that can be if the table is large.

Index: An index is a set of keys made up of single or multiple columns in a table or view. They are stored in a structure (B-tree) that helps SQL Server users quickly and efficiently find the rows or rows associated with the key values.
Index can be defined as:
· “An index is an on-disk structure associated with a table or views that speed retrieval of rows from the table or view. An index contains keys built from one or more columns in the table or view”. These keys are stored in a structure (B-tree) that enables SQL Server to find the row or rows associated with the key values quickly and efficiently.”
· “An index is a database object created and maintained by DBMS. It is essentially a list of the contents of a column or group of columns. Indexes are ordered so that extremely first search can be computed through them to find data.”
[bookmark: _Toc342038858][bookmark: why_index]Why Use an Index?
Use of SQL server indexes provide many facilities such as:
· Rapid access of information
· Efficient access of information
· Enforcement of uniqueness constraints
Correct use of indexes can make the difference between a top performing database with high customer satisfaction and a non-performing database with low customer satisfaction.
Heap Table Vs Cluster Index Table
	Heap Table
	 Index Table

	Data is not stored in any specific order

	Data is stored in in order based on the Clustered Index key

	Specific or filter data cannot be retrieved quickly, unless non-Clustered Indexes are created on the table
	If the query uses cluster index columns, data can be retrieved faster

	Data pages are independent (not linked), so sequential access needs to refer back to Index Allocation Map (IAM) pages.
	Data pages are linked with each other for faster sequential access

	No additional time is required to maintain cluster index
	Required additional time to maintain cluster index

	Not required additional space to store a Clustered Index tree
	Requires additional space to store a Clustered Index tree

	Sys.indexes catalog view has value 0 in column "index_id"for these tables.
	Sys.indexes catalog view has value 1 in column "index_id"for these tables.

	Heap is best suited when the table is tiny. For example one organization has 4 to 5 branch, so the branch table can be created as a heap table.
	Clustered table can be created for all scenarios. But needs caref to select the index key.

[bookmark: _Toc342038859][bookmark: types_of_index]Major Types of Indexes
SQL Server has two major types of indexes:
1. Clustered [1 Clustered Index]
2. Non-Clustered [999 Non Clustered Index]
The index type refers to the way the index is stored internally by SQL Server. So a table or view can contain the two types of indexes.
Clustered indexes.
This is one index per table and basically specifies the order how data is stored in the table.
For example, if the table has the clustered key index on the integer field, it means data will be actually sorted by that integer field. Please don’t be confused - there is still no such thing like default sorting order for the queries - the order of the rows SQL Server returns would depend on the execution plan which could be different than clustered index scan.
An index defined as being clustered, defines the physical order that the data in a table is stored. Only one cluster can be defined per table. So it can be defined as:
· Clustered indexes sort and store the data rows in the table or view based on their key values. These are the columns included in the index definition. There can be only one clustered index per table, because the data rows themselves can be sorted in only one order.
· The only time the data rows in a table are stored in sorted order is when the table contains a clustered index. When a table has a clustered index, the table is called a clustered table. If a table has no clustered index, its data rows are stored in an unordered structure called a heap.
CREATE [CLUSTERED | NONCLUSTERED]
 INDEX index_name ON table (column1)
[WITH [PAD_INDEX] [[,] FILLFACTOR = fillfactor1] [[,] IGNORE_DUP_KEY] [[,] DROP_EXISTING]
 [[,] STATISTICS_NORECOMPUTE]
]
[ON filegroup1]
CLUSTERED : Indicates that the index created is a clustered index.
NONCLUSTERED :
Indicates that the index created is a nonclustered index.
index name: Is the name of the index.
Table : The name of the table on which the index is to be created.
column1 : The column to which the index is to be applied.
PAD_INDEX
Specifies the space to be left open on each page (node) in the intermediate levels of the index. (This is useful only when FILLFACTOR is specified).
FILLFACTOR = fillfactor1
Specifies the fillfactor for the index as fillfactor1.
IGNORE_DUP_KEY

A fill factor is a specification done during the creation of indexes so that a particular amount of space can be left on a leaf level page to decrease the occurrence of page splits when the data has to be accommodated in the future.

A pad index specifies index padding. When it is set to ON, then the free space percentage per the fill factor specification is applied to the intermediate-level pages of the index. When it is set to OFF, the fill factor is not specified and enough space is left for a maximum size row that an index can have

Internals of Clustered Index : So what exactly is the clustered index? This is B-tree. Let’s see what is that.
[image:]
[image: http://dwkor.net/blog/2010-09-22/Pic1.png]
The image above shows a small table with ID as the primary key (and clustered index). As the side note, SQL Server creates clustered index on the primary key field by default.
Leaf level (the bottom one) contains actual table data sorted by ID. As you can see, the data pages are linked into the double-linked list so SQL Server can scan the index in both directions.
[image:]

Why create clustered indexes
There are a couple benefits to having a clustered index on a table.
First when querying the table, it requires fewer IO operations since an extra lookup is not needed to get any/all of the non-key column data. This data is stored in the leaf node of the index.
Second it gives us a way to reorganize the table data. If the table has no clustered index it is then stored in a heap structure. When our data becomes fragmented over time due to DML operations the only way to fix this fragmentation is to reload all the data into a new table
 With a clustered index in place we can run and index reorganize or rebuild to address the fragmentation which in some cases can be done online while the table is still accessible to other processes.
When should clustered indexes be created
As a general rule of thumb is it's best to create a clustered index on a table when the same columns are heavily used in the WHERE clause portion of a query. Queries that perform a lot of range scans with the indexed columns in the WHERE clause can also benefit greatly from having a clustered index on these columns.
 In both cases since the data is output in basically the same order that it is queried we end up using less resources to execute the query. In all cases we will use less disk IO and in some cases (depending on the ORDER BY clause) we can save ourselves memory and CPU by not having to perform a sort since data is already ordered. The following example shows how no extra lookups are required to fetch the actual data and also that no sort is required as the data is already in the correct order.
SQL Server Clustered Index Benefits and Usage
The are many benefits to having a clustered index defined on a table but the main benefit is speeding up query performance.
SQL Server Clustered Index Disadvantages
There are a couple of disadvantages when it comes to clustered indexes. There is some overhead in maintaining the index structure with respect to any DML operation (INSERT, UPDATE, DELETE). This is especially true if you are updating the actual key values in the index as in this case all of the associated table data also has to be moved as it is stored in the leaf node of the index entry. In each case there will be some performance impact to your DML query.
Examples :
SQL Server Clustered Index Basic Syntax
CREATE CLUSTERED INDEX indexname ON TableName (indexname);
	Before Index – Table Scan
SET STATISTICS IO ON
SET STATISTICS TIME ON
select * from ProductSalesDetail where SalesOrderDetailID = 23692

After Index – Index scan or Index Seek

create clustered Index ix_SDID on ProductSalesDetail(SalesOrderDetailID)

SET STATISTICS IO ON
SET STATISTICS TIME ON
select * from ProductSalesDetail where SalesOrderDetailID = 23692

	
CREATE CLUSTERED INDEX ix_SalesId ON SalesOrderDetail_HEAP (SalesOrderID);

SELECT * FROM SalesOrderDetail_HEAP WHERE SalesOrderID =43755

SELECT * FROM SalesOrderDetail_HEAP WHERE ProductID= 750

Non Clustered indexes.
SQL Server allows having up to 249 non-clustered indexes per table in SQL 2005 and 999 non-clustered indexes in SQL 2008/2012/2014/2016/2019/2022/2024
As a non-clustered index is stored in a separate structure to the base table, it is possible to create the non-clustered index on a different file group to the base table. So it can be defined as:
· Non-Clustered indexes have a structure separate from the data rows. A non-clustered index contains the non-clustered index key values and each key value entry has a pointer to the data row that contains the key value.
· The pointer from an index row in a non-clustered index to a data row is called a row locator. The structure of the row locator depends on whether the data pages are stored in a heap or a clustered table. For a heap, a row locator is a pointer to the row. For a clustered table, the row locator is the clustered index key.
· You can add nonkey columns to the leaf level of the Non-Clustered index to by-pass existing index key limits, 900 bytes and 16 key columns, and execute fully covered, indexed, queries.
If you think about the book, page number is the clustered index. Alphabetical annotation at the end of the book - is the non-clustered index.
Now let’s look at the non-clustered index. Assuming we have the index by Name field.
[image: http://dwkor.net/blog/2010-09-22/Pic2.png]
	
Example of Creating a Index
CREATE UNIQUE NONCLUSTERED INDEX IX_NC_PresidentNumber -- specify index name

	 ON dbo.Presidents (PresidentNumber) -- specify table and column name

The structure of the index is exactly the same with the exception that leaf level does not contain table data but values for the clustered index. It does not really matter if you specify ID in the index definition, it would be there. For the heap tables, leaf level contains actual RID - Row id which consists of
FileId: PageNumber:RowNumber. Annotation at the end of the book is a good example. It does not include the actual paragraph from the book but the page # (clustered index)
What is a SQL Server Non-Clustered Index?
A non-clustered index is the other main type of index used in SQL Server. Similar to its clustered index counterpart, the index key columns are stored in a B-tree structure except in this case the actual data is not stored in the leaf nodes.
 In this type of index, a pointer to the actual table data is stored in the leaf node. This could point to the data value in the clustered index or in a heap structure depending on how the table data is stored.
SQL Server Non-Clustered Index Benefits and Usage
The benefits of a non-clustered index are similar to that of the clustered index we mentioned above, the main benefit being speeding up query performance.
 There are however two differences.
The first is that you can have multiple non-clustered indexes defined on a single table. This allows you to index different columns which can help queries with different columns in the WHERE clause allowing you to fetch data faster and in the ORDER BY clause to eliminate a need for a sort.
 The second is that although there is overhead for a non-clustered index when it comes to DML operations there is less than its clustered counterpart.
Example
	Before NonClusteredIndex (Index Scan)
select * from ProductSalesDetail where SalesProductId= '711-23692'

After Index (Index Seek)
	Create nonclustered index ix_PSSPID ON ProductSalesDetail(SalesProductId)

WHAT IS INDEX SCAN & INDEX SEEK
INDEX SCAN WILL SCAN ALL THE PAGES TO GET THE RECORD
INDEX SEEK WILL SCAN THE PARTICULAR PAGE TO GET THE RECORD
SQL Server Non-Clustered Index Disadvantages
Similar to the clustered index the main disadvantage of a non-clustered index is the extra overhead required in maintaining the index during DML operations. It can sometimes be tricky to balance query performance as having too many non-clustered indexes on a table, while they will help all of your SELECT queries, can sometimes really slow down DML performance.
SQL Server Non-Clustered Index Basic Syntax
	Clustered Index
	Nonclustered Index

	This will arrange the rows physically in the memory in sorted order
	This will not arrange the rows physically in the memory in sorted order.

	This will fast in searching for the range of values.
	This will be fast in searching for the values that are not in the range.

	1 Index for the table.
	You can create a maximum of 999 nonclustered indexes for the table.

	The leaf node of 3 tiers of the clustered Index contains table data.
	The leaf nodes of the b-tree of the nonclustered Index contain pointers to get the included pointers with two table data and not the table data directly.

SQL Server Column Store Index
What is a SQL Server Column Store Index?
A column store index is a different type of non-clustered index that uses a column-based storage format in order to index the data. Column store indexes can be created as a clustered or as non-clustered index.
SQL Server Column Store Index Benefits and Usage
Column store indexes were designed to be used when indexing very large amounts of data in data warehouse applications, specifically for fact tables. This type of index stores the index data in a column based format rather than row based as is done with traditional indexes.
Depending on the data being indexed you can see up to a 100 times improvement in query performance. Column store indexes also provide an option for data compression. Depending on your data you could see up to 10 times saving in storage space. The less selective your column is, the more it can be compressed.
SQL Server Column Store Index Disadvantages
As with every feature there are some drawbacks when it comes to column store indexes.
 They can't be used with all datatypes: varchar(max)/nvarchar(max), xml and text/ntext, image and CLR types are not supported for column store indexes.
They also can't be used if features such as replication, change data capture or change tracking are enabled.
With regards to performance, although your SELECT queries can see a big benefit that is not the case with DML operations. Due to the overhead required when updating a column store index any DML operations will perform worse than a row-based counterpart.
SQL Server Column Store Index Basic Syntax
CREATE NONCLUSTERED COLUMNSTORE INDEX [IndexName] ON TABLENAME(COLNAME1, COLNAME2)
Example
SELECT ProductID,SUM(OrderQty) FROM Sales.SalesOrderDetail GROUP BY ProductId;
	

	Table 'SalesOrderDetail'. Scan count 1, logical reads 1246, physical reads 3, page server reads 0, read-ahead reads 1277, page server read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob page server reads 0, lob read-ahead reads 0, lob page server read-ahead reads 0.

 SQL Server Execution Times:
 CPU time = 47 ms, elapsed time = 76 ms.

After
	CREATE COLUMNSTORE INDEX IX_SalesOrderDetail_ProductIDOrderQty_ColumnStore
ON Sales.SalesOrderDetail (ProductId,OrderQty);
Confirm Index Usage
Once the index is created we can write a basic aggregation query similar to what you would see in any data warehouse environment. This TSQL will simply sum the order quantity across each product.
SELECT ProductID,SUM(OrderQty)
FROM Sales.SalesOrderDetail
GROUP BY ProductId;
we can see that the entire query was satified by scanning the column store index. No table access was even required.
[image: query plan]
Table 'SalesOrderDetail'. Segment reads 1, segment skipped 0.

 SQL Server Execution Times:
 CPU time = 47 ms, elapsed time = 90 ms.

Why use a columnstore index?
There are two main benefits of column store indexes. First they reduced storage costs. Column store indexes provide a very high level of compression, up to 10x, due to the fact that the data across columns is usually very similar and will compress quite well. Second is better performance. This benefit is multi-faceted. With a smaller index footprint, due to the compression, we reduce the amount of IO we have to perform. Also because of this small footprint we can fit more of the index into memory which helps to speed up processing. Finally queries often only query a few columns from the table. Since the data is stored in a column based format this also reduces the amount of IO that needs to be performed.
SQL Server Index Included Columns
Not really a type of index but it's actually a clause that can be added to a non-clustered index which stores the column values listed in the clause in the leaf nodes of the index. This allows the non-clustered index to behave kind of like a clustered index in that it can retrieve the column data for these columns with having to do a lookup in the table data. It also allows more columns to be included in the index since it supports columns that could otherwise not be supported as a key column. All datatypes except text, ntext, and image are supported in the included columns clause.
CREATE NONCLUSTERED INDEX IX_TestData_TestDate_incTestData3 ON TestData (TestDate)
 INCLUDE (TestData3);
Before Include Index
select ProductNumber,Name from Production.Product Where Name ='Cable Lock'

	

Example
	CREATE NONCLUSTERED INDEX IX_Production_ProductNumber_Name
 ON Production.Product (Name ASC) INCLUDE (ProductNumber);
SELECT ProductNumber, Name FROM Production.Product WHERE Name = 'Cable Lock';
[image: query plan for index seek]
Non-clustered indexes relation to clustered index

SQL Server Filtered Index
A filtered index is a non-clustered index which includes a WHERE clause. They are useful when created on large tables in order to reduce the size of the index, reduce maintenance time and improve query performance for specific queries. Note that this type of index will only be used if the WHERE clause of the index matches the WHERE clause of the query.
CREATE INDEX IX_TestData_TestDate_TestTypeEq1 on TestData (TestDate) WHERE TestType=1;
Example

A filtered index is created simply by adding a WHERE clause to any non-clustered index creation statement. The following TSQL is an example of the syntax to create a filtered index.
Before
	

CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate_INC_ShipDate ON Sales.SalesOrderHeader
(OrderDate ASC) WHERE ShipDate IS NULL;

Confirm Index Usage
The following query should use our newly created index as there are very few records in the table with ShipDate NULL. Here is the TSQL.
SELECT OrderDate FROM Sales.SalesOrderHeader
WHERE ShipDate IS NULL
ORDER BY OrderDate ASC;

SQL Server Covering Index (MultiColumn Index)
A covering index is a non-clustered index where all columns referenced in a query are either part of the index key or are specified in the included column clause of the index creation statement. Covering indexes speed up performance as they eliminate the need to look up any extra column data from the table itself. Below is an example of a covering index which covers all columns in query below referenced below it.
SYNTAX
CREATE NONCLUSTERED INDEX Index_Name on TestData (TestDate,TestType)
 INCLUDE (TestData1,TestData2,TestData3,TestData4);

	select ProductID,OrderQty,UnitPrice from ProductSalesDetail
where SalesProductId = '23692'

Before Index

create nonclustered index ix_P
on ProductSalesDetail(SalesProductId,ProductID,OrderQty,UnitPrice)

select ProductID,OrderQty,UnitPrice from ProductSalesDetail
where SalesProductId = '23692'

Example
		SELECT customer_id,first_name,last_name FROM sales.customers WHERE last_name = 'Berg' AND first_name = 'Monika';

[image: SQL Server CREATE INDEX on multiple columns index scan]
The query optimizer scans the clustered index to locate the customer.
To speed up the retrieval of data, you can create a nonclustered index that includes both last_name and first_name columns:
	1
2
	CREATE INDEX ix_customers_name ON sales.customers(last_name, first_name);

Now, the query optimizer uses the index ix_customers_name to find the customer.
SELECT customer_id,first_name,last_name FROM sales.customers WHERE last_name = 'Berg' AND first_name = 'Monika';
[image: SQL Server CREATE INDEX on multiple columns index seek]
When you create a nonclustered index that consists of multiple columns, the order of the columns in the index is very important. You should place the columns that you often use to query data at the beginning of the column list.
For example, the following statement finds customers whose last name is Albert. Because the last_name is the leftmost column in the index, the query optimizer can leverage the index and uses the index seek method for searching:
SELECT customer_id,first_name,last_name FROM sales.customers WHERE last_name = 'Albert';
[image: https://www.sqlservertutorial.net/wp-content/uploads/SQL-Server-CREATE-INDEX-leftmost-column-query.png]
This statement finds customers whose first name is Adam. It also leverages the ix_customer_name index. But it needs to scan the whole index for searching, which is slower than index seek.
SELECT customer_id, first_name, last_name FROM sales.customers WHERE first_name = 'Adam';
[image: SQL Server CREATE INDEX multiple columns not leftmost column index scan]

SUMMARY

QUERY TO FIND INDEX TABLE INFO
SELECT
 sys.tables.name,sys.indexes.name,sys.columns.name
FROM sys.indexes
 INNER JOIN sys.tables ON sys.tables.object_id = sys.indexes.object_id
 INNER JOIN sys.index_columns ON sys.index_columns.index_id = sys.indexes.index_id AND sys.index_columns.object_id = sys.tables.object_id
 INNER JOIN sys.columns ON sys.columns.column_id = sys.index_columns.column_id AND sys.columns.object_id = sys.tables.object_id
WHERE sys.tables.name = 'EmployeeDemographic'
ORDER BY sys.tables.name,sys.indexes.name,sys.columns.name
BASIC COMMANDS OF INDEX
	CREATE INDEX :
CREATE INDEX index_name on TableName(colname)
DROP A INDEX : DROP INDEX INDEX_NAME ON TABLENAME
DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail]
DROP INDEX _dta_index_Orders_17_21575115__K3_1_2_4_5_6_7_8_9_10_11_12_13_14 ON ORDERS
REBUILD / REORGANIZE INDEX
ALTER INDEX IndexName ON TableName REORGANIZE ;
ALTER INDEX IndexName ON TableName REBUILD ;

ALTER INDEX ALL ON TableName REORGANIZE ;
ALTER INDEX ALL ON TableName REBUILD ;

ALTER INDEX CustomerID ON Orders REORGANIZE ;
ALTER INDEX EmployeeID ON Orders REBUILD ;

The differences between an index defrag and an index rebuild are as follows:
	Option
	DBCC DBREINDEX (SQL 2000)
ALTER INDEX REBUILD (SQL 2005)
	DBCC INDEXDEFRAG (SQL 2000)
ALTER INDEX REORGANIZE (SQL 2005)

	Rebuild All Indexes
	Yes
	Need to run for each index. In SQL 2005 using the ALTER INDEX you can specify ALL indexes.

	Online Operation
	No, users will be locked out until complete. In SQL Server 2005 Enterprise Edition you can build indexes online.
	Yes, users can still use the table

	Transaction Log Impact
	Depends on the recovery model of the database
	Fully logged operation regardless of the database recovery model

	Transaction Log Impact
	If set to the full recovery model can consume a lot of space for operation to complete.
	If index is very fragmented this could potentially take up more transaction log space.

	Can run in parallel (uses multiple threads)
	Yes
	No

SQL SERVER – Difference between Index Rebuild and Index Reorganize Explained with T-SQL Script
Index Rebuild: This process drops the existing Index and Recreates the index.

USE AdventureWorks;
GO
ALTER INDEX ALL ON Production.Product REBUILD
GO

Index Reorganize: This process physically reorganizes the leaf nodes of the index.
USE AdventureWorks;
GO
ALTER INDEX ALL ON Production.Product REORGANIZE
GO
DMV - sys.dm_db_index_usage_stats
This DMV shows you how many times the index was used for user queries. Again there are several other columns that are returned if you query all columns and you can refer to Books Online for more information.
SELECT OBJECT_NAME(S.[OBJECT_ID]) AS [OBJECT NAME],
 I.[NAME] AS [INDEX NAME],
 USER_SEEKS,
 USER_SCANS,
 USER_LOOKUPS,
 USER_UPDATES
FROM SYS.DM_DB_INDEX_USAGE_STATS AS S
 INNER JOIN SYS.INDEXES AS I ON I.[OBJECT_ID] = S.[OBJECT_ID] AND I.INDEX_ID = S.INDEX_ID
WHERE OBJECTPROPERTY(S.[OBJECT_ID],'IsUserTable') = 1
 AND S.database_id = DB_ID()
Here we can see seeks, scans, lookups and updates.
· The seeks refer to how many times an index seek occurred for that index. A seek is the fastest way to access the data, so this is good.
· The scans refers to how many times an index scan occurred for that index. A scan is when multiple rows of data had to be searched to find the data. Scans are something you want to try to avoid.
· The lookups refer to how many times the query required data to be pulled from the clustered index or the heap (does not have a clustered index). Lookups are also something you want to try to avoid.
· The updates refers to how many times the index was updated due to data changes which should correspond to the first query above.
[image: SYS.DM_DB_INDEX_USAGE_STATS output]
Identifying Unused Indexes
So based on the output above you should focus on the output from the second query.
If you see indexes where there are no seeks, scans or lookups, but there are updates this means that SQL Server has not used the index to satisfy a query but still needs to maintain the index. Remember that the data from these DMVs is reset when SQL Server is restarted, so make sure you have collected data for a long enough period of time to determine which indexes may be good candidates to be dropped.
DMV - sys.dm_db_index_operational_stats
This DMV allows you to see insert, update and delete information for various aspects for an index. Basically this shows how much effort was used in maintaining the index based on data changes.
If you query the table and return all columns, the output may be confusing. So the query below focuses on a few key columns. To learn more about the output for all columns you can check out Books Online.
SELECT OBJECT_NAME(A.[OBJECT_ID]) AS [OBJECT NAME],
 I.[NAME] AS [INDEX NAME],
 A.LEAF_INSERT_COUNT,
 A.LEAF_UPDATE_COUNT,
 A.LEAF_DELETE_COUNT
FROM SYS.DM_DB_INDEX_OPERATIONAL_STATS (db_id(),NULL,NULL,NULL) A
 INNER JOIN SYS.INDEXES AS I
 ON I.[OBJECT_ID] = A.[OBJECT_ID]
 AND I.INDEX_ID = A.INDEX_ID
WHERE OBJECTPROPERTY(A.[OBJECT_ID],'IsUserTable') = 1
Below we can see the number of Inserts, Updates and Deletes that occurred for each index, so this shows how much work SQL Server had to do to maintain the index.
[image: SYS.DM_DB_INDEX_OPERATIONAL_STATS output]

	

OTHER EXAMPLES
	USE AdventureWorks;
GO
SELECT City, StateProvinceID, PostalCode
FROM Person.Address
WHERE StateProvinceID = 1;
GO

Once we have run the above query, data should now be available in our management views. Let's take a quick look at each of these.
The first query gets data from the sys.dm_db_missing_index_details view. This is probably the most helpful, since this shows us the object_id and the equality_columns and the inequality_columns. In addition we get some other details about included columns.
	SELECT * FROM sys.dm_db_missing_index_details

	SELECT * FROM sys.dm_db_missing_index_details

[image: https://www.mssqltips.com/tipimages/1634_p1.gif]

DMV – UNUSED INDEX
	There are 3 primary DMVs which provide information about the Missing Indexes in SQL Server
	--Returns detailed information about missing indexes
SELECT * FROM sys.dm_db_missing_index_details
 	--Returns information about what missing indexes are contained in a specific missing index group
SELECT * FROM sys.dm_db_missing_index_groups
	--Returns summary information about groups of missing indexes
SELECT * FROM sys.dm_db_missing_index_group_stats

[bookmark: _GoBack]

26 | Page

image1.png
& 8
— Table Scan
[SalesOrderDetail HEAP]

Cost: 2 % Cost: 52 %

image2.png
I e e e e

150% ~ 4

& Messages E° Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT * FROM SalesOrderDetail HEAP WHERE SalesOrderID =43755

Table Scan
[SalesOrderDetail HEAP]
Cost: 100 %

‘ SELECT * FROM SalesOrderDetail HEAP WHERE SalesOrderID

image3.png
EXEC SP_SPACEUSED 'SalesOrderDetail HEAP'

—ISELECT OBJECT_NAME(s.object_id) AS [TableName], s.row_count AS [RowCount],
s.used_page_count AS [UsedPages],s.reserved_page_count AS [ReservedPages]
FROM sys.dm_db_partition_stats s JOIN sys.tables t

ON s.object_id = t.object_id WHERE OBJECT_NAME(s.object_id) = 'SalesOrderDetail_HEAP';

~ISELECT OBJECT_NAME(pa.object_id) AS [TableName],
pa.page_free_space_percent,
pa.page_type_desc,
pa.allocated_page_page_id,
na.extent file id

0% ~ 4
2 Resuis g Messages
name fows reserved data index_size unused
1 | SalesOrderDetal_HEAP | 121317 12104KB 11976KB 8 KB 120KB
TableName RowCount UsedPages ReservedPages
1 | SalesOrderDetail_HEAP | 121317 1498 1513
TableName page._free_space_percent page_type_desc allocated_page_page_id extent_file_id
SalesOrderDetail_HEAP | 100 1AM_PAGE 446 1
> SalesOrderDetail_HEAP 100 DATA_PAGE 496

1
SalesOrderDetail_HEAP 100 NULL 497 1

image4.png
FROM AdventureWorks.SALES.SalesOrderDetail

name rows reseved data index_size unused
SalesOrderDetal_HEAP | 121317 12584KB 12064KB 80KB 440KB

TableName RowCount UsedPages ReservedPages

SalesOrderDetail_HEAP | 121317 1518 1573

TableName page_free_space_percent page_type_desc allocated_page_page_id _extent_fle_id
SalesOrderDetai_HEAP | NULL 1AM_PAGE 506 1
“SalesOrderDetai_HEAP NULL DATA_PAGE 1688 1
SalesOrderDetail_HEAP NULL DATA_PAGE 1689 1
SalesOrderDetail_HEAP NULL DATA_PAGE 1690 1
SalesOrderDetail_HEAP NULL DATA_PAGE 1691 1
SalesOrderDetail_HEAP NULL DATA_PAGE 1692 1
SalesOrderDetail_HEAP NULL DATA_PAGE 1693 1

image5.webp

image6.png
'Creaoe table T Clustered Index

1D int not null primary key,
Name varchar), ID:1[ID:57| .. [ID:950
Field1 int

)

ID:1 | ID:5 10: 507, *in: 57 jons **[ip: 950[ID: 955 1D: 999)

Leaf level / Table Data

ID:1 | ID:2 ID: 51 ID: 56 ID: 955ID: 956 ID: 960,
Zack | Jdohn Sue Boris Lary | Sue Mary
10 5 100 9 [ee 5 | 100)

image7.gif
id | index_id = 1 | root_page
Root node
previous | next
ndex rovs_|
Intermediate
level
v v ~Y
—{previous | next previous | next |~ previous | next
Tndex rons Tndex rons Tndex rons

Leaf nodes/
data pages

Py P Ty i ey

sl _ |oreios]
ow] s

Romsor * | Rowsof |* | Rows of | | Rowsor [* | Rows of
Gata ata tota data Gata

image8.png
o N

& Messages E° Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT * FROM SalesOrderDetail HEAP WHERE SalesOrderID =43755

oy

Clustered Index Seek (C.
[SalesOrderDetail HEAP].
cost: 100 %

image9.png
150% ~ 4

& Messages E° Execution plan

Query 1: Query cost (relative to the batch):

100%
SELECT * FROM SalesOrderDetail HEAP WHERE ProductID= 750

Clustered Index Scan (C.
[SalesOrderDetail HEAP].
Cost: 100 %

image10.png
Create index IDX_T_Name

on T(Name) Abby | Dan Victor
Abby | Boris Carolm Dan
Abby | Andy Boris | Boris Brian
ID: 730 | ID: 110 ID:4 ID: 56 1D: 840

will
1d: 75

Non Clustered Index

Victor

Wil

Zack

Leaf level / Clustered Index
Values

Will
1D: 420

D3

Yanet ﬁ:

image11.png
- DIL...dministr

150% ~ 4
& Messages §° Execution plan

Query 1: Query cost (relative to the batch): 100%

select * from ProductSalesDetail where SalesProductId= '711-23692'
Clustered Index Scan (C..

[ProductSalesDetail]. [i..
Cost: 100 %

image12.png
150% - 4
& Messages E° Execution plan

Query 1: Query cost (relative to the batch): 100%
select * from ProductSalesDetail where SalesProductId=

'711-23692"

L] i

Nested Loops

Index Seek (NonClustere.
(Inner Join) [ProductSalesDetaill . [i..
Cost: 0 % Cost: 50 %

Key Lookup (Clustered)
[ProductsalesDetail]. [i..
Cost: 50 %

image13.png
--Before column store
set statistics io on

set statistics time on
SELECT ProductID,SUM(OrderQty) FROM Sales.SalesOrderDetail GROUP BY ProductId;

150% - 4
& Messages E° Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT ProductID,SUM(OrderQty) FROM Sales.SalesOrderDetail GROUP BY ProductId

pr= p
Hash Match Clustered Index Scan (C..
(aggregate) [salesorderDetaill . [PK_..

Cost: 35 % Cost: 65 %

image14.png
=]
=== Hash Match (=== Columstore Index Scan (NonClustere.
(Aggregate) [SalesOrderDetail] . [IX_SalesOrderDe..

Cost: 81 % Cost: 15 %

image15.png
150% - 4
& Messages E° Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT ProductNumber, Name FROM Production.Product WHERE Name = 'Cable Lock'

L] i
Nested Loops Index Seek (NonClustere..
(Inner Join) [Product] . [AK_Product_N..
Cost: 0 % Cost: 50 %

)
Key Lookup (Clustered)

[Product]. [PK_Product_P..
Cost: 50 %

image16.png
— Index Seek (NonClustered)
“ [Product] . [IX_Production_Productium.
Cost: 100 %

image17.png
—|SELECT OrderDate FROM Sales.SalesOrderHeader
WHERE ShipDate IS NULL

ORDER BY OrderDate ASC;

150% ~

& Messages E° Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT OrderDate FROM Sales.SalesOrderHeader WHERE ShipDate IS NULL ORDE
Missing Index (Impact 97.323): CREATE NONCLUSTERED INDEX [<Name of Missi
= 1] iy
Clustered Index Scan (C..
sort
Cost: 5 %

[SalesOrderHeader] . [PK_.
Cost: 95 %

image18.png
150 %

BE

& Messages E° Execution plan

Query 1: Query cost (relative to the batch):

100%

Cost: 50 %

Key Lookup (Clustered)
[ProductSalesDetail]. [i..
Cost: 50 %

select ProductID,OrderQty,UnitPrice from ProductSalesDetail where SalesProductId = '23
L] i
Nested Loops Index Seek (NonClustere..
(Inner Join) [ProductSalesDetaill. [i..
Cost: 0 %

image19.png
K
s
“——— Clustered Index Scan (Clusversa)
< [customers] . [PK__customer_ CDESCBES..
om0 % o~ <

Cosz: 100 3

image20.png
i
iy S

o fcustomers] _ix_custoners_nane]
Cosei 0% Cost: 100 3

image21.png
%
smmcy | Tndex Seak (enClussezed)
Cosmi 0% Cosz: 1003

image22.png
ih
S

o feustomers] ix_custoners_name]
Cosei 0% Cost: 100 3

image23.png
(OBJECT NAME INDEX NAME

VUSER_SEEKS USER_SCANS USER_LOOKUPS USER_UPDATES
S CowtyRegonCurency PK_CourtiyRegonCurency_CountyRegonCode_Cure.. 6036) 0

10 Cosomeriddress K Customeriddress rowgud o H g el

M Customeriddress.

PK_CustomerAddress_CustomerlD_AddressiD 2 0 0 -

image24.png
(OBJECT NAME INDEX NAME LEAF_INSERT COUNT LEAF_UPDATE_COUNT LEAF_DELETE_ COUNT
1 ContactCredtCard PK_CortactCrediCard_CortactiD_CredtCardiD [

2 CotyRegonGurency PK_CountiyRegionCurency_CourtryRegionCode._.

3 Employee PK_Employee_EmployeelD

image25.gif
index_handle | database id | object id | equaliy_columns | inequaliy_columns | included_columns | statement
I T 5375229 [StateProvincelD] NULL [City, [PostalCode] _ [AdventueWorks]

